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Analytical Expansion of the Dispersion
Relation for TLM Condensed Nodes

Vladica Trenkic, Member, IEEE, Christos Christopoulos, Member, IEEE, and Trevor M. Benson, Member, IEEE

Abstract— A method for obtaining analytical solutions of the
general transmission line modeling (TL.M) dispersion relation for
condensed node schemes is described. Exact analytical forms of
the dispersion relation for currently available nodes are derived,
enabling the efficient study of dispersion solutions without resort-
ing to a numerical solver. Using these analytical relations, the
range and behavior of propagation errors is fully explored and
visualized, not only for propagation along the axes and diagonals
or in a coordinate plane, but for arbitrary angles of propaga-
tion in three-dimensional space. Comparisons are presented of
the numerical performance of different TLM condensed node
schemes.

I. INTRODUCTION

ODELING MATERIALS with arbitrary permittivity €

and permeability ¢ and the use of discretization cells
with arbitrary aspect ratio (graded mesh) may be achieved in
the transmission line modeling (TLM) method by introducing
open- and short-circuit stubs to the conventional symmetrical
condensed node (SCN) [1] or by altering the characteristic
impedances of the link lines as established in the symmetrical
super-condensed node (SSCN) [2]. These two approaches
are combined in the hybrid symmetrical condensed nodes
(HSCN) [3], [4]. The accuracy of a TLM scheme is dependent
on dispersion. The dispersion of the TLM condensed node
mesh was originally analyzed in [5] and [6] where a general
dispersion relation for the 12-port SCN was derived in the
form of an eigenvalue equation. Closed-form solutions to
this equation were recently obtained for the SCN without
stubs [7], [8] and for the SSCN [9]. Modifications of the
general dispersion relation for nodes with stubs can be found
in [10]-[16]. The exact analytical formulae for these nodes
have so far been obtained only for special cases, namely for
propagation in a coordinate plane [9], [12] and along axes and
diagonals [16]. A comprehensive numerical study of dispersion
was performed in [15], but this was limited to two-dimensional
(2-D) propagation only.

In this paper we present a systematic method of deriving
dispersion relations algebraically for all condensed nodes
in arbitrary propagation directions. We use the method of
Faddeev [17] to efficiently compute the required number
of leading coefficients of the characteristic polynomial. This
analytical expansion of the general TLM dispersion relation
facilitates a thorough assessment of the accuracy of available
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TLM schemes. As a quantitative measure of the deviation from
the linear dispersion characteristics of Maxwell’s equations,
we compute and visualize the propagation error as a function
of propagation angles in three-dimensional space. The use
of analytical expressions in these computations eliminates
potential problems in the separation of two, usually very
close, orthogonal solutions, found in the stub-loaded SCN
and the HSCN and experienced when using a numerical
solver [10]. The results obtained are further checked using
simulations of electromagnetic fields in cubic resonators. A
detailed comparison of the numerical characteristics of the
existing condensed nodes is presented and guidance is offered
to users.

II. ANALYTICAL EXPANSION

The general dispersion relation for the SCN is given as [6]
det(PS — e’°I) =0 (1)

where 6 is the phase shift along the constituent transmission
lines, defined by 6 = wAt, 1 is the identity matrix, S is the
scattering matrix of the SCN [1], and P is a matrix repre-
senting Floquet’s theorem [6], which contains the Cartesian
components k;, ky, k. of the propagation vector k. The general
dispersion relation (1) can be used for other nodes, provided
that the appropriate scattering matrix S is chosen and the
matrix P is modified to account for the presence of stubs
and mesh grading [10]-[16].

Relation (1) can be solved as an eigenvalue problem,
because the left-hand side of (1) represents the characteristic
polynomial of the matrix PS in terms of ¢ = exp (j0). By
obtaining the coefficients C;,¢ = 1--- N, of this Nth order
polynomial, we can write (1) as

N
PO () =4+ CypN =0 @

i=1

where N is equal to the number of node ports. Assuming the
presence of h+ nonpropagating solutions of the form ¢ = £1
and r possible degeneracies of propagating solutions [7], (2)
can be written as

PM() = (- DMy +1(QVE) =0 (3)
where n = (N — h — [)/r, which simplifies to

QM (Y) =9"+Y Ba" =0 “
=1

where B; ,—1...,, are coefficients to be determined.
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TABLE I
PARAMETERS OF THE CHARACTERISTIC POLYNOMIAL
[Node [Case [N[h[l]r[n[m]

SCN — (1212]1212) 412
SSCN [ all [12]2 (22 4] 2
HSCN | all 115{2|371[10] 5
Stub- 1 15{213[1[10] 5
loaded | 2 [18[2]|0[2] 8 | 4
SCN 3 1812101116/ 8

Case 1:
Case 2:
Case 3:

uniform mesh: e, > 1, yp, =lor p, > 1,6, =1
uniform or graded mesh: ¢, = p,
uniform or graded mesh: &, # p,.

Due to symmetry, propagating eigenvalues must appear in
reciprocal pairs (1,4 '), corresponding to propagation in
positive and negative directions [8]. Hence it is easily proved
that n must be an even number and that the coefficients
of Q™ (¢) must be symmetrical, ie., B; = B,_, and
B, = 1, so that only m = n/2 coefficients B, need to
be determined. Dividing (4) by 2¢™ (where m = n/2),
substituting B, = 1 and B,_; = B, and making use of
P 4+t = 900 4 =30 = 2¢0g(if) for i = 1---m,
(4) simplifies to

6 m_lB )0)+ 2m g
cos(mb) + ; i cos[(m —i)0] + =" = 0.

©)

Expression (5) is a general algebraic form of the dispersion
relation for propagating solutions. By raising the polynomial
Q™ (4)) to the power of r and multiplying by (1y—1)"(y+1)’,
the coefficients B; can be related to the coefficients C, of
the polynomial PV (). Since only m coefficients B; are
unknown, it is sufficient to obtain the first m coefficients C, of
the characteristic polynomial P(V) (1)) to derive the dispersion
relation (5). An efficient method for the computation of leading
coefficients of the characteristic polynomial is the method of
Faddeev [17] described by the following pseudo-code:

Algorithm 1 (Faddeev Method)

A= PS;
fori:=1to N
begin

N
C,; = - ZAj’J /Z,
J=1

A:=PS (A+CI)
end;

This method has the advantage over conventional diagonal-
ization methods that it can be terminated when a sufficient
number of coefficients (m) is computed. Parameters h, I, r,
and n appearing in (3) differ for various available nodes.
They can be determined by setting fixed, arbitrary numerical
values for propagation vector, material properties, and node
spacing, so as to obtain numerical roots of (V) (1)) and thus to
identify solutions of the form 1 =1 and possible degeneracies.
These parameters for the presently available nodes are shown
in Table I. Note that we separate the analysis of the stubbed
SCN into three different cases.
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To facilitate a compact formulation of the dispersion rela-
tions derived below, we introduce the following substitutions,
which will be used throughout the paper:

S1=¢xtcytc, 83 = CzCyC,

82 = CzpCy + CyCy + CrCy Sg = 281 + 89

with ¢, = cos(kzAz) — 1,¢y = cos(kyAy) — 1 and ¢, =
cos(k,Az) — 1.

A. Basic 12-Port SCN

To illustrate the proposed methodology, we start by deriving
the closed-form dispersion relation of the 12-port SCN. Using
data from Table I we write (3) as

PU(y) = (p - 1)2(p + 1)H(QD ()2 =0.  (6)

Since m = n/2 = 2, only the first two coefficients of the
polynomial P(1?) (1)) need to be calculated. Using the Faddeev
method, coefficients Cy and C5 are obtained as C; = 0 and
Cy = —2(s4 + 3) where relationships between Ci,C, and
By, B; are found by expanding P(?) (1) from (6)

Ci=2B; Cy=B}+2By—2 (7

which leads to By = 0 and By = —(s4 + 2). By inserting
By, Bs and m = 2 into (5) and expanding cosines of multiple
angles we obtain the dispersion relation for the SCN as

4cos’(f) = s, +4 3

which is the relation already derived in [7] and [8].

B. Symmetrical Super-Condensed Node

It can be seen from Table I that the parameters of the
characteristic polynomial for the SSCN equal those for the 12-
port SCN. Hence, the relationships between By, By and C;, Cs
are given by (7). Using the Faddeev method for the SSCN on
uniform mesh we obtain By = 0 and By = —s4/(e, 1) — 2
and derive the dispersion relation from (5) as

de,piy sin?(f) = —sy. 9)

The dispersion relation for the graded SSCN can be obtained
in a similar manner and was described in [9].

C. Hybrid Symmetrical Condensed Node

The analytical expansion of the dispersion relation for the
hybrid node (HSCN) requires the determination of m = 5
coefficients. Due to restricted space, only the algebraic-form
dispersion relation for the uniform HSCN mesh is shown here,
while expressions for the graded mesh can be found in [18].
The five coefficients B; required for the dispersion relation
(5) can be computed by establishing relationships between
coefficients C, and B; and applying the Faddeev method to
give

B, =2(p81 + 1)

By =p*(s3 4+ 83) +2(p— 1)ss — 3

Bs =p*(s182 — 83) + 2p(p — 1)(s? + s182 + 52 + 3s3)
= 2p(s{ — 52) — 4(s4 + 2)
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By =2p*(s152 + 8183 + 83 — s3)
+ p?(357 — 25159 — 28153 — 53 ~ 59 + 653)
—(2p—1)(sa+1)sqa+s4+2

By = 2@3(3132 + 48183 + 38283 + 3s3)
+ p*(3s% — 25150 — 28183 — 55 — $2 + 653)
+ p(35384 — 28184 — 281 + 6s3)

+ 54(s4 +4) + 6] (10)

where p = 1 — 1/(eppsr).

D. Stub-Loaded Symmetrical Condensed Node

In Case 1, when p, = 1, the stub-loaded SCN is identical
to the HSCN Type I [3), whereas for €, = 1 it is identical
to the HSCN Type II [4]. Hence, the dispersion relation for
the stub-loaded SCN in Case 2 is described by the dispersion
relation of the HSCN, derived above.

In Case 2, when &, = p,., four coefficients B, are obtained
for the case of uniform mesh as

B; =2(rs; +2)

By =7%(3s3 — 281) + 2r(sg + 451) — 84 + 4

Bj = 2r3(s3 — 285) + 41%(3s3 + s9 — 251)
+2r(=3s3 4+ 253 + 7s1) —4(s4 + 1)

By = 4r3(—733 — 289) + 2r%(12s3 + 82 — 651)

+ 4r(—3s3 + 82 +481) — 2(384 + 5) an

where r = 1 — 1/,/&.1i,. The coefficients for a graded mesh
can be found in [18].

In Case 3, when &, # pu,, the eight coefficients B; of
the polynomial Q(*®)()) can be obtained using the Faddeev
method. For propagation along a coordinate plane (k, = 0)
and using a uniform mesh, this polynomial factorizes as

Q19 = (A + 1)*RE MR ). (12)

The coefficients of the polynomial R{*) () are

By =si(u+v)+2
By =251(u+v — uv) + 52(2uv + 2u+ v?) — 54 — 1
Bs =2[(s1 + vs2)(u + v — 2uv) — 3squv — 54 — 2] (13)

where u = 1 — 1/e,. and v = 1 — 1/p,. The coefficients of
the polynomial Rg’j (M) are identical to (13) provided that u
and v swap places.

For propagation along a diagonal plane (k, = k) and using
a uniform mesh, the polynomial Q(®)()\) factorizes as

Q19 (x) = REMWRF (). (14)

The coefficients of Rgs)(/\) and Rgs) () are found in the form

By =c(u+3v) +c.(u+v)+4
By =cg(ep + 2¢ {uv +u + 20?% + v —1)
+ ¢ (u—v)(2c,v+1)
+ (2¢p + ¢,)(Bu+5v - 2uv —2) + 4
B3 =2c2c,v(uv + 3u + 3v — 3)
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Y= arctan(;:l)
T

¢ = arccos( =)

||
|kl =/(k2 + k2 + k2)

Fig. 1. Components of the propagation vector.

+ deg(cp + 2¢,)(0* — 1)(1 — u) + cp(u — v)
+ (2, + ) (Tu+ Tv — 8uv — 8) — 4
By =2[2c¢%c,v(3u+ 3v — Tuv — 3)
+ co(ex + 2¢.)(—4uv? — wv + 3u + 20% — v — 3)
+c.(2¢,v + 1) (v — u)
+ (2¢, + . )(bu + 3v — 6uv — 6) — 5. (15)

III. QUANTITATIVE ANALYSIS OF DISPERSION

The dispersion relations derived here are either linear or
quadratic expressions in terms of cos(k,Axz), cos(k,Ay) or
cos(k,Az), thus enabling exact analytical computation of
the propagation vector k for a given w. We perform our
analysis here for the example of uniform mesh with node
spacing d and nondissipative isotropic materials with arbitrary
e, and p,. Assuming that the propagation constant in a
medium is defined as k,, = 2x /Ao, where Aq is the expected
wavelength, we compute 6 as § = knd/(2\/-) [13],
choosing a certain discretization level d/Aq. We then compute,
using the dispersion relations, the relative deviation of the
propagation vector k, given by 6" = (|k| — Eum)/km, where
k| = (k2 + k2 + k2)1/2.

It has been shown in [19] that all TLM condensed schemes
have second-order accuracy, so that when the discretization
level (d/)) is decreased by a factor of two, dispersion error
decreases by a factor of four. Therefore, we can normalize
the relative deviation 8k’ corresponding to Ag to a new value
6k, which corresponds to the modeled vaiue of wavelength
A = 2x/|k|, using 6k = &k'(A/Ao)? [18]. The propagation
error §k computed for the benchmark discretization of d/A =
0.1 will be denoted by 6k and it is investigated for different
angles of propagation ¢, ¢ defined as 9 = arctan(k, /k,) and
o = arccos(k,/|k|), as depicted in Fig. 1.

For validation purposes, the propagation error 6k can also
be calculated from the numerical simulation of resonators and
waveguides by 8k = (fo — f)/f, where fo, f are the physical
and modeled frequencies, respectively [18].

The propagation error 8k for the 12-port SCN, calculated
from the dispersion relation (8) is illustrated in Fig. 2 uvsing
contour and surface plots. The contour plot shows this error
for angles 0 < ¢, 9 < 90°. It can be seen that maximum error
occurs for propagation along the main space diagonal [111].
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Fig. 2. Propagation error in SCN (erpyr = 1).

Because of the symmetry, 6k is shown in the surface plot of
Fig. 2 only for angles 0 < ¢ < 45°. A cross section of the
surface plot for ¥ = 0 gives information on the propagation
errors along a coordinate plane, in this case y = 0, and
contains directions [uOv]. A cross section for ¢ = 45° gives
these errors for propagation along a diagonal plane, in this
case « = y, and contains directions [uuv].

A. Stub-Loaded SCN in Case 1 and HSCN

With coefficients obtained from (10), the dispersion relation
(5) is a quadratic equation in cos(k,d), cos(kyd) or cos(k.d),
which yields two solutions, corresponding to two orthogonal
wave polarizations. For the case of propagation in the zy-plane
these solutions contain components F,, H,, H, or H,, E;, E,
[12], which subsequently are referred to as TE and TM modes,
respectively. These two orthogonal solutions are plotted in
terms of the propagation error 6k for e,u, = 8 in Fig. 3(a)
and (b).

We now analyze the dispersion for propagation in coordinate
(ky = 0) and diagonal (k, = k) planes, defined as subcases
(a) and (b), respectively. Note that for subcase (a), (5) with
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Fig. 3. Propagation error in stub-loaded SCN Case 1 and HSCN for
erptr = 8. (@) TM and (b) TE modes for the stub-loaded node modeling a
dielectric (g, = 8) and for the Type I HSCN. (a) TE and- (b) TM modes

for the stub-loaded node modeling a magnetic medium (p, = 8) and for
the Type II HSCN.

coefficients (10) simplifies into two separate dispersion rela-
tions for TE and TM modes, presented in [9]. Fig. 4(a) and
(b) shows the propagation error 8k in the stub-loaded SCN in
Case 1 and the HSCN for subcases (a) and (b). The upper and
lower sets of curves. in Fig. 4(a) and (b) correspond to TM
and TE solutions of (5) for the stub-loaded SCN modeling a
dielectric (y, = 1) and for the Type 1 HSCN. The opposite
interpretation of the solutions is valid for the stub-loaded SCN
modeling magnetic media (e, = 1) and for the Type I HSCN.
Different directions of propagation can be studied in
Fig. 4(a) and (b), some of which are marked on the Z-axis.
Both parts of Fig. 4 show the coexistence of positive and
negative propagation errors, described in [12] as “bilateral
dispersion.” The two sets of curves representing orthogonal
solutions of (5) converge for axial propagation [Fig. 4(a)] and
propagation along the main space diagonal [Fig. 4(b)].

B. Stub-Loaded SCN in Case 2

With coefficients obtained from (11), dispersion relation (5)
is a linear equation in cos(k,d), cos(kyd) or cos(k.d), yielding
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subcases (a) and (b).

a single dispersion solution, which confirms numerical results
in [12]. A solution of (5) in terms of the propagation error 8k
for ,u, = 8 is shown in Fig. 5.

Fig. 6 shows the propagation error in the stubbed SCN for
Case 2(b). It shows that &k is significantly higher than in Case
1, and that the highest error occurs for axial propagation {e.g.,
[001]). The solutions at a given frequency converge when
£pftr — 00 but at a slower rate than in Case 1. The propagation
error is bilateral for smaller ¢, and negative for higher &, pr-.

C. Stub-Loaded SCN in Case 3

Fig. 7(a) and (b) shows the propagation error in the stub-
loaded SCN for Cases 3(a) and (b), respectively, for e,.p, =
const = 8, computed by using (13) and (15). Note that the
three curves corresponding to values &, pt, > 2 are very close,
indicating that the propagation error for Case 3 for higher
values of e,, yi, is similar to that in Case 2, unless &, — 1

or i, — 1 when Case 3 converges to Case 1. As in Case 1,
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Fig. 6. Propagation error in stub-loaded SCN Case 2(b).

swapping values of ¢, and y, swaps orthogonal solutions for
TE and TM modes.

D. Symmetrical Super-Condensed Node

The propagation error 8k in the SSCN for e,p, = 8
is computed from (9) and is shown in Fig. 8. The surface
8k(yp,d) in Fig. 8 has the same shape as the related surface
for the 12-port SCN shown in Fig. 2 with 8k shifted by
around 1.45%. Fig. 9 shows that the propagation error for
the SSCN is always positive (i.e., unilateral) and is largest
for propagation along the main space diagonal. The curves
for different &, u,- are uniformly shifted, which means that the
range of propagation error within an individual medium is
constant.

IV. VALIDATION

The analytical expressions presented here have been
checked against results from the eigenvalue analysis of cubic
resonators, using a simulation procedure similar to that of [12].
Assuming that the wavelength X is imposed by the boundary
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Fig. 7. Propagation error 1n stub-loaded SCN for Cases 3(a),(b).

conditions of a resonator and following the definitions and
discussion in Section II, the propagation error 6k, normalized
further to account for the fact that d/A # 0.1, is computed by

w(5)(E) o

Note that a positive 6k means that f underestimates fy. Nu-
merical results are marked with diamond symbols and plotted
in Figs. 4, 6, 7, and 9 for different propagation directions.
They are found to be in excellent agreement with the analytical
plots. Spurious propagating solutions described in [6] and [7]

do not show significant impact on the results obtained from
these simulations.

V. COMPARISONS

A summary of the numerical characteristics of the existing
condensed nodes is shown in Table II. The properties of the

12-port SCN are also shown as reference, although this node
cannot model inhomogeneous media.
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The first set of rows of Table II concerns the nature of the
dispersion. In TLM, errors due to dispersion depend normally
on the discretization (d/)), wave velocity (1/./27) and direc-
tion of propagation (¢, ¢). The two orthogonal solutions of (5)
for the stub-loaded SCN and the HSCN reveal that dispersion
for these nodes is further dependent on the wave polarization.
This can have the effects of splitting degenerate modes, which
would otherwise have the same resonant frequencies, and
changing the polarization of propagating waves [11]. The
dispersion in the stub-loaded SCN is also function of the
medium impedance, i.e., it depends on p.. /e, for y.&, = const
and both the stub-loaded SCN and the HSCN experience bi-
lateral dispersion [12]. In contrast, the nature of the dispersion

errors in the SSCN is identical to that of the basic SCN,
i.e., dispersion is independent of the wave polarization and
of the medium impedance and the error is unilateral. These
are regarded as advantageous features of the SSCN.

The second set of rows of Table II shows maximum
propagation errors calculated for a discretization of d/A =
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TABLE II
NUMERICAL CHARACTERISTICS OF VARIOUS TLM CONDENSED NODE SCHEME
Node SCN Stub-loaded SCN HSCN | SSCN
Case 1l | Case 2 | Case 3

Dispersion independent of the wave polarization Yes No Yes No No Yes
Dispersion independent of the medium impedance [ Yes No Yes No Yes Yes
Unilateral propagation error Yes No No No No Yes
Max. positive propagation error dkmax+ (%) 057 | 083 | 057 | 0.83 | 083 | 222
Max. negative propagation error 8kmax — (%) 0.00 | 0.79 3.26 3.26 0.79 0.00
Total error range, dk; = 8kmax+ + 0kmax— (%) 057 | 1.62 3.83 4.09 162 | 222
Storage N (locations per node) 12 15 18 18 15 12
Total error range 8k;, g normalized to N = 18 (%) | 044 | 143 | 3.83 | 409 | 143 | 1.69
MUL operations per node per iteration 6 9 12 12 12 6
ADD/SUB operations per node per iteration 24 48 54 54 48 48

0.1, for all propagation angles and all media with properties
1 < &1, < oo. Table 11 shows that the total error range Elgt,
defined as in [12}], is the highest in the stub-loaded SCN in
Cases 2 and 3. In order to compare further the performance of
various nodes, the error range ﬁt is normalized to N = 18
storage locations per node by multiplying it with (N/18)
raised to the power of two (second-order accuracy) and 1/3
(three-dimensional mesh) to produce 8k 15 = 0k;(N/18)%/3.
Effectively, 3@18 represents the error range for each node
assuming the same total storage and it is smallest for the
HSCN. However, the SSCN is more computationally efficient
as it uses only six multiplicative (MUL) operations per node
per time step for the scattering procedure [20].

Further consideration should be given to dispersive effects at
interfaces between nodes modeling different materials. The im-
pact of mesh grading may be studied using the same approach
as described in Section II. The effect of mesh grading is to
introduce different behavior in different directions, however,
the error range is similar to that for uniform mesh (18], [21]. In
general, the optimum TLM condensed node scheme is problem
dependent and data in Table II offer a general guidance as to
what may be achievable in each case. It appears that when
modeling dielectric materials, the stub-loaded SCN and the
HSCN are the most accurate and reasonably efficient, but
degenerate modes are likely to be split. For the general case
(&r, pr > 1), the HSCN offers the best accuracy, whereas the
SSCN offers a higher efficiency and identical dispersion for
TE and TM modes. ’

VI. CONCLUSION

Using a systematic algebraic procedure, analytical expan-
sion of the general TLM dispersion relation was made possible
for different symmetrical condensed nodes capable of model-
ing media with arbitrary electromagnetic parameters. Efficient
ways of studying and visualizing dispersion errors were pre-
sented and a detailed quantitative analysis and comparison of
the results were performed. The analytical results obtained by
solving dispersion relations were validated against modeled
results.

The dispersion analysis presented here can be combined
with the theoretical foundation of the general symmetrical
condensed node [19] in order to explore possibilities of deriv-

ing new TLM schemes with better propagation characteristics.
Given the theoretical instrument to describe new nodes and a
systematic analytical procedure to study their accuracy, further
work will be directed toward the development of such more
advanced TLM formulations. A comprehensive comparison
between the available TLM and finite-difference schemes will
also be subject of the future work.
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