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Abstract— A method for obtaining analytical solutions of the
general transmission line modeling (TLM) dispersion relation for
condensed node schemes is described. Exact analytical forms of
the dispersion relation for currently available nodes are derived,
enabling the efficient study of dispersion solutions without resort-
ing to a numerical solver. Using these analytical relations, the
range and behavior of propagation errors is fully explored and
visualized, not only for propagation along the axes and diagonals
or in a coordinate plane, but for arb]trary angles of propaga-
tion in three-dimensional space. Comparisons are presented of
the numerical performance of different TLM condensed node
schemes.

I. INTRODUCTION

M ODELING MATERIALS with arbitrary permittivity E’
and permeability p and the use of discretization cells

with arbitrary aspect ratio (graded mesh) may be achieved in
the transmission line modeling (TLM) method by introducing
open- and short-circuit stubs to the conventional symmetrical
condensed node (SCN) [1] or by altering the characteristic
impedances of the link lines as established in the symmetrical
super-condensed node (SSCN) [2]. These two approaches

are combined in the hybrid symmetrical condensed ‘nodes
(HSCN) [3], [4]. The accuracy of a TLM scheme is dependent

on dispersion. The dispersion of the TLM condensed node
mesh was originally analyzed in [5] and [6] where a general
dispersion relation for the 12-port SCN was derived in the
form of an eigenvalue equation. Closed-form solutions to
this equation were recently obtained for the SCN without
stubs [7], [8] and for the SSCN [9]. Modifications of the

general dispersion relation for nodes with stubs can be found
in [10]–[ 16]. The exact analytical formulae for these nodes

have so far been obtained only for special cases, namely for
propagation in a coordinate plane [9], [12] and along axes and

diagonals [16]. A comprehensive numerical study of dispersion
was performed in [15], but this was limited to two-dimensional
(2-D) propagation only.

In this paper we present a systematic method of deriving
dispersion relations algebraically for all condensed nodes
in arbitrary propagation directions. We use the method of
Faddeev [17] to efficiently compute the required number
of leading coefficients of the characteristic polynomial. This
analytical expansion of the general TLM dispersion relation
facilitates a thorough assessment of the accuracy of available
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TLM schemes. As a quantitative measure of the deviation from

the linear dispersion characteristics of Maxwell’s equations,
we compute and visualize the propagation error as a function
of propagation angles in three-dimensional space. The use
of analytical expressions in these computations eliminates
potential problems in the separation of two, usually very
close, orthogonal solutions, found in the stub-loaded ,SCN
and the HSCN and experienced when using a numerical
solver [10]. The results obtained are further checked using

simulations of electromagnetic fields in cubic resonators. A

detailed comparison of the numerical characteristics of the
existing condensed nodes is presented and guidance is offiered

to users.

II. ANALYTICALEXPANSION

The general dispersion relation for the SCN is given as [6]

det(PS – ej”I) = O (1)

where 6 is the phase shift along the constituent transmission
lines, defined by 6 = wAt, I is the identity matrix, S is the

scattering matrix of the SCN [1], and P is a matrix repre-

senting Floquet’s theorem [6], which contains the Cartesian

components k., kv, k. of the propagation vector ~. The general
dispersion relation (1) can be used for other nodes, provided
that the appropriate scattering matrix S is chosen and the
matrix P is modified to account for the presence of stubs
and mesh grading [10]–[16].

Relation (1) can be solved as an eigenvalue prot)lem,

because the left-hand side of (1) represents the characteristic
polynomial of the matrix PS in terms of @ = exp (j@). By

obtaining the coefficients Ci, i = 1 . . . N, of this IVth order
polynomial, we can write (1) as

(2)P(N)(+) = ‘l@’+ ~ et@-’ = o
i=l

where N is equal to the number of node ports. Assumin;g the
presence of h+z nonpropagating solutions of the form ~ ,==+1
and r possible degeneracies of propagating solutions [71, (2)

can be written as

(3)P@)(*) =(+ - 1)~(~ + l)~(Q@)(*))” = o

where n = (N – h – 1)/r, which simplifies to

Q(”)(7))= 7)”+ y B,’/jn-’ = o
%=1

where Bi,,= 1...n are coefficients to be determined.

(4)
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TABLE I
PARAMETERSOF THE CHARACTERISTICPOLYNOMIAL

Node Case N h 1 r n m

SCN — 12 2 2 2 4 2

SSCN all 12 2 2 2 4 2

HSCN all 15 2 3 1 10 5
Stub- 1 15 2 3 1 10 5
loaded 2 18 2 0 2 8 4

SCN 3 18 2 0 1 16 8

case 1: uniform mesh: E, >1, pr = 1 or p, >1, E, = 1
Case 2: uniform or graded mesh: E, = p,
Case 3: uniform or graded mesh: e. # ~,.

Due to symmetry, propagating eigenvalues must appear in

reciprocal pairs (~, @– 1), corresponding to propagation in
positive and negative directions [8]. Hence it is easily proved
that n must be an even number and that the coefficients
of Q[nJ (~) must be symmetrical, i.e., l?i = 13n_t and
Bm = 1, so that only m = n/2 coefficients B, need to
be determined. Dividing (4) by 2@rn (where m = n/2),
substituting Bm = 1 and Bn.i = B, and making use of
+’ + ~-~ = ~~(@ + ~–~(@ = zcos(~e) for ~ = 1... m,

(4) simplifies to

m—1

cos(md) + ~ Bi cos[(m – i)d] + ~ = O. (5)
i=l

Expression (5) is a general algebraic form of the dispersion
relation for propagating solutions. By raising the polynomial
Q(m)(~) to the power of r and multiplying by (@–l)~(~+l)Z,
the coefficients l?i can be related to the coefficients C, of
the polynomial ?(~) (0). Since only m coefficients Bi are
unknown, it is sufficient to obtain the first m coefficients C, of
the characteristic polynomial T(N) (~) to derive the dispersion
relation (5). An efficient method for the computation of leading

coefficients of the characteristic polynomial is the method of
Faddeev [17] described by the following pseudo-code:

Algorithm 1 (Faddeev Method)

A := PS;
fori:=ltoiV
begin

()
N

(li:=– ~Aj,j /i;
J&l

A := PS, (A + CiI)
end;

This method has the advantage over conventional diagonal-
ization methods that it can be terminated when a sufficient
number of coefficients (m) is computed. Parameters h, 1, r,
and n appearing in (3) differ for various available nodes.
They can be determined by setting fixed, arbitrary numerical
values for propagation vector, material properties, and node
spacing, so as to obtain numerical roots of?(N)(~) and thus to
identify solutions of the form @+ 1 and possible degeneracies.
These parameters for the presently available nodes are shown
in Table I. Note that we separate the analysis of the stubbed
SCN into three different cases.

To facilitate a compact formulation of the dispersion rela-

tions derived below, we introduce the following substitutions,

which will be used throughout the pape~

S1=CZ+CV+C3 S3 = Cxcycz

S2 =Czcv + Cgcz + Czcm SJ = 2s1 + .s2

with CZ = cos(k~Az) — 1, Cy = cos(ky Ay) — 1 and CZ =
cos(kZA.z) – 1.

A. Basic 12-Port SCN

To illustrate the proposed methodology, we st~ by deriving

the closed-form dispersion relation of the 12-port SCN. Using

data from Table I we write (3) as

p(lz)(~) = (~ – 1)2(+ + 1)2( Q(4)(+))2 = o. (6)

Since m = n/2 = 2, only the first two coefficients of the
polynomial P(lZ) (~) need to be calculated. Using the Faddeev
method, coefficients Cl and C2 are obtained as Cl = O and
Cz = –2(s4 + 3) where relationships between Cl, C2 and
BI, B2 are found by expanding ‘F’(12J(~) from (6)

Cl = 2BI C2=B; +2B2–2 (7)

which leads to B1 = O and B2 = – (s4 + 2). By inserting

B1, B2 and m = 2 into (5) and expanding cosines of multiple

angles we obtain the dispersion relation for the SCN as

4COS2(0) = s~ + 4 (8)

which is the relation already derived in [7] and [8].

B. Symmetrical Super-Condensed Node

It can be seen from Table I that the parameters of the
characteristic polynomial for the SSCN equal those for the 12-

port SCN. Hence, the relationships between BI, B2 and Cl, Ca

are given by (7). Using the Faddeev method for the SSCN on
uniform mesh we obtain B1 = O and B2 = –s4/(.z. p,) – 2
and derive the dispersion relation from (5) as

4CT,U.sin2(0) = –s~. (9)

The dispersion relation for the graded SSCN can be obtained
in a similar manner and was described in [9].

C. Hybrid Symmetrical Condensed Node

The analytical expansion of the dispersion relation for the
hybrid node (HSCN) requires the determination of m = 5
coefficients. Due to restricted space, only the algebraic-form
dispersion relation for the uniform HSCN mesh is shown here,
while expressions for the graded mesh can be found in [18].
The five coefficients Ba required for the dispersion relation

(5) can be computed by establishing relationships between
coefficients C, and Bi and applying the Faddeev method to
give

BI = 2(ps1 +1)

Bz =f12(S~ + s2) + 2(fI – l)Sq – 3

B3 =P3(S1S2 – s3) + 2P(P – 1)(S: + S1S2 + S2 + 3s3)

– 2p(s; – S2) – 4(s4 +2)
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B~ = 2p3(s~82 + s~s~ + s; – s~)

+’P2(3S~ – 2s1s2 – 2s1Ss – S; – sz + 6S3)

- (2p- 1)(3. +l)s. +s, +2

BS = 2~3(SISZ + 4SIS3 + 3SZS3 + 3s3)

+p2(3s~ – 2s1s2 – 2s1s3 – s; – S2 + 6S3)

+P(3s3s4 – 2S1S4 – 2s1 + 6S3)

+ 34(s4 +4) +6] (lo)

wherep = 1– l/(erKr).

D. Stub-Loaded Symmetrical Condensed Node

In Case 1, when p. = 1, the stub-loaded SCN is identical
to the HSCN Type I [3], whereas for e. = 1 it is identical
to the HSCN Type II [4]. Hence, the dispersion relation for

the stub-loaded SCN in Case 2 is described by the dispersion

relation of the HSCN, derived above.

In Case2, whencr =~,, four coefficientsl?z are obtained
for the case of uniform mesh as

B~ = 2(rs~ +2)

Bz =?-2(3s2 – 2s1) + 2?-(s2 + 4s1) – S4 + 4

l?~ = 2T3(S3 – 2s2) + 47-2(3s3 + s~ – 2s1)

+ 2’r(-3sa + 2s2 + 7s1) – 4(s4 + 1)

l?4 = 4r3(–7s3 – 2S2) + 2T-2(12S3 + S2 – 6s1)

+ 4r(–3s3 + S~ + 4s~) – 2(3s4 + 5) (11)

where r = 1 – 1/-. The coefficients for a graded mesh

can be found in [18].
In Case 3, when E, # IJr, the eight coefficients B~ of

the polynomial Q(16J (A) can be obtained using the Faddeev
method. For propagation along a coordinate plane (k, = O)
and using a uniform mesh, this polynomial factorizes as

Q(16) (A) = (A+ l)%f@)7?f@). (12)

The coefficients of the polynomial 7?~) (A) are

B1=s1(u+v)+2

B2 =2s1(u+w–uv) +S2(2UV+2U+V2) – S4 – 1

B3 = 2[(s~ + WSZ)(U+ v – 2UU) – 3SZUV– s~ – 2] (13)

where u = 1 – l/eT and v = 1 – 1/pr. The coefficients of

the polynomial 7?~) (A) are identical to (13) provided that u
and v swap places.

For propagation along a diagonal plane (IcZ = kg) and using

a uniform mesh, the polynomial Q(16) (A) factorizes as

(14)Q(’6)(A) = Rf)(A)nf)(A).

The coefficients of %?~) (A) and 7?$) (A) are found in the form

Bl=cZ(u+ 3v)+cz(u+v)+4

B2 =CZ(CZ + 2CZ)(UV + U+ 2V2 + V – 1)

+ C,(U – V)(2C.V + 1)

+ (2C. +CZ)(3U+5V – 2UV–2) +4

B3 = 2C;CZV(ZLV+ 3U + 3V – 3)

kz

Fig. 1. Components of the propagation vector.

+ 4C.(CZ + 2CZ)(V2 – 1)(1 – ‘u) + C.(u – ‘u)

+ (2cz +c3)(7u+7v–8uv –8) –4

B4 = 2[2c~czv(3u + 3V – 7UV – 3)

+ C.(C. i- 2cz)(–4uv2 – UV + 3’u+ 2V2 – V – ~)

+ CZ(2C.V+ 1)(V – u)

i- (2c.3+ cz)(5u+ 3V – 6UV– 6) – 5]. (15)

III. QUANTITATIVEANALYSISOF DISPERSION

The dispersion relations derived here are either linear or
quadratic expressions in terms of cos(k%Az), cos(kVAy) or
COS(kz Az), thus enabling exact analytical computation of

the propagation vector i for a given w. We perform our

analysis here for the example of uniform mesh with node
spacing d and nondissipative isotropic materials with arbitrary
SF and ,uT, Assuming that the propagation constant in a
medium is defined as km = 27r/Ao, where A. is the expected
wavelength, we compute O as O = kind /(2-) [13],
choosing a certain discretization level d/Jo. We then compute,
using the dispersion relations, the relative deviation of the

propagation vector ~, given by dk’ = (1kl – k~)~k~, where
Ikl = (k: + k; + k:)llz.

It has been shown in [19] that all TLM condensed schemes
have second-order accuracy, so that when the discretization
level (d/A) is decreased by a factor of two, dispersion (error
decreases by a factor of four. Therefore, we can normalize
the relative deviation 6k’ corresponding to A. to a new value
ISk, which corresponds to the modeled value of wavelength
A = 27r/lkl, using 6k = 8k’(A/Ao)2 [18]. The propagation
error &k computed for the benchmark discretization of d/A =

0.1 will be denoted by ~ and it is investigated for different
angles of propagation p, d defined as ti = arct an(kg / lcz) and
q = arccos(kZ/ Ikl), as depicted in Fig. 1.

For validation purposes, the propagation error 6k can also
be calculated from the numerical simulation of resonatom and

waveguides by fik = (f. – ~)/ f, where .fo, j are the physical
and modeled frequencies, respectively [18].

The propagation error ~ for the 12-port SCN, calculated
from the dispersion relation (8) is illustrated in Fig. 2 using
contour and surface plots. The contour plot shows this error
for angles O < q, 0 ~ 90°. It can be seen that maximum error
occurs for propagation along the main space diagonal [111].
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Fig.2. Propagation error inSCN (e~p~ = 1).

Because of the symmetry, ~is shown in the surface plot of

Fig.2 only for angles O 50545°. Across section of the

surface plot for 0 = O gives information on the propagation

errors along a coordinate plane, in this case y = O, and

contains directions [uOV]. A cross section for 0 = 45° gives

these errors for propagation along a diagonal plane, in this

case z = y, and contains directions [UUV].

A. Stub-Loaded SCN in Case 1 and HSCN

With coefficients obtained from (10), the dispersion relation
(5) is a quadratic equation in cos(kzd), cos(kgd) or cos(k.d),
which yields two solutions, corresponding to two orthogonal

wave polarizations. For the case of propagation in the zy-plane

these solutions contain components J%, Hz, ~y or ~~, ~~, %

[12], which subsequently are referred to as TE and TM modes,
respectively. These two orthogonal solutions are plotted in—
terms of the propagation error tik for e~,u~ = 8 in Fig. 3(a)
and (b).

We now analyze the dispersion for propagation in coordinate
(k, = O) and diagonal (k. = kg) planes, defined as subcases

(a) and (b), respectively. Note that for subcase (a), (5) with

,5

.0

(a)

\
i\

I
0.5

k“” 0.0

.- —., ,, ---.........”.,,,

0 ,5
-50

0
:~<.,

(b)

Fig. 3. Propagation error in stub-loaded SCN Case 1 and HSCN for
G-P, = 8. (a) TM and (b) TE modes for the stub-loaded node modeling a
dielectric (s. = 8) and for the Type I HSCN. (a) TE and (b) TM modes
for the stub-loaded node modeling a magnetic medium (K, = 8) and for
the Type II HSCN.

coefficients (10) simplifies into two separate dispersion rela-
tions for TE and TM modes, presented in [9]. Fig. 4(a) and

(b) shows the propagation error ~ in the stub-loaded SCN in
Case 1 and the HSCN for subcases (a) and (b). The upper and
lower sets of curves in Fig. 4(a) and (b) correspond to TM
and TE solutions of (5) for the stub-loaded SCN modeling a
dielectric (VT = 1) and for the Type I HSCN. The opposite
interpretation of the solutions is valid for the stub-loaded SCN
modeling magnetic media (c. = 1) and for the Type II HSCN.

Different directions of propagation can be studied in
Fig. 4(a) and (b), some of which are marked on the z-axis.
Both parts of Fig. 4 show the coexistence of positive and
negative propagation errors, described in [12] as “bilateral
dispersion.” The two sets of curves representing orthogonal
solutions of (5) converge for axial propagation [Fig. 4(a)] and
propagation along the main space diagonal [Fig. 4(b)l.

B. Stub-Loaded SCN in Case 2

With coefficients obtained from (1 1), dispersion relation (5)
is a linear equation in cos(k. d), Cos(kv d) or Cos(kz d), yielding
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Fig. 4. Propagation error in stub-loaded SCN Case 1 and tbe HSCN for
subcases (a) and (b).

a single dispersion solution, which confirms numerical results

in [12]. A solution of (5) in terms of the propagation error ~
for e.pr = 8 is shown in Fig. 5.

Fig. 6 shows the propagation error in the stubbed SCN for

Case 2(b). It shows that ~ is significantly higher than in Case

1, and that the highest error occurs for axial propagation (e.g.,

[001]). The solutions at a given frequency converge when
&rpT + cc but at a slower rate than in Case 1. The propagation
error is bilateral for smaller s~p, and negative for higher G-v..

C. Stub-Loaded SCN in Case 3

Fig. 7(a) and (b) shows the propagation error in the stub-
loaded SCN for Cases 3(a) and (b), respectively, for e,p~ =
const = 8, computed by using (13) and (15). Note that the
three curves corresponding to values %., p. >2 me vev close>
indicating that the propagation error for Case 3 for higher

vahtes of ET, ,& is similar to that in Case 2, unless ~r + 1
or M. -+ 1 when Case 3 converges to Case 1. As in Case 1,

1s 9Q ~=
&s =? —,% 3?

0.0,
A

-0.5 L A

.
,:-1.OI

e.=.

‘-s

Fig. 5. Propagation error in stub-loaded SCN Case 2 for E, p, = 8.
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Fig. 6. Propagation error in stub-loaded SCN Case 2(b).

swapping values of &v and pr swaps orthogonal solutions for

TE and TM modes.

D. Symmetrical Super-Condensed Node

The propagation error ~ in the SSCN for S,WT = 8
is computed from (9) and is shown in Fig. 8. The surface
~(p, 0) in Fig. 8 has the same shape as the related surface

for the 12-port SCN shown in Fig. 2 with ~ shifted by

around 1.45Y0. Fig. 9 shows that the propagation etmr for
the SSCN is always positive (i.e., unilateral) and is largest
for propagation along the main space diagonal. The curves
for different +w, are uniformly shifted, which means that the
range of propagation error within an individual medium is
constant.

IV. VALIDATION

The analytical expressions presented here have been
checked against results from the eigenvalue analysis of (cubic
resonators, using a simulation procedure similar to that of [12].
Assuming that the wavelength J is imposed by the boundary
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Fig. 7. Propagation error In stub-loaded SCN for Cases 3(a),(b).

conditions of a resonator and following the definitions and

discussion in Section II, the propagation error ~, normalized
further to account for the fact that d/A # 0.1, is computed by

‘= ($%%)2 (16)

Note that a positive ~ means that f underestimates f.. Nu-
merical results are marked with diamond symbols and plotted
in Figs. 4, 6, 7, and 9 for different propagation directions.
They are found to be in excellent agreement with the analytical
plots. Spurious propagating solutions described in [6] and [7]

do not show significant impact on the results obtained from

these simulations.

V. COMPARISONS

A summary of the numerical characteristics of the existing
condensed nodes is shown in Table II. The properties of the
12-port SCN are also shown as reference, although this node
cannot model inhomogeneous media.

Fig. 8. Propagation error in SSCN for &,P, = 8.
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Fig. 9. Propagation error in SSCN for subcase (b).

The first set of rows of Table II concerns the nature of the

dispersion. In TLM, errors due to dispersion depend normally

on the discretization (d/A), wave velocity (1/@) and direc-

tion of propagation (0, p). The two orthogonal solutions of (5)
for the stub-loaded SCN and the HSCN reveal that dispersion
for these nodes is further dependent on the wave polarization.
This can have the effects of splitting degenerate modes, which
would otherwise have the same resonant frequencies, and
changing the polarization of propagating waves [1 1]. The
dispersion in the stub-loaded SCN is also function of the

medium impedance, i.e., it depends on p. /cr for przv = const

and both the stub-loaded SCN and the HSCN experience bi-

lateral dispersion [12]. In contrast, the nature of the dispersion

errors in the SSCN is identical to that of the basic SCN,

i.e., dispersion is independent of the wave polarization and
of the medium impedance and the error is unilateral. These
are regarded as advantageous features of the SSCN.

The second set of rows of Table II shows maximum
propagation errors calculated for a discretization of d/A =



TRENKtC et al.: ANALYTICAL EXPANSION OF DISPERSION RELATION FOR TLM CONDENSED NODES 2229

TABLE II
NUMERICALCHARACTERISTICSOFVARIOUSTLM CONDENSEDNODE SCHEME

Node

Dispersion independent of the wave polarization
Dkpersion independent of the medhun impedance
Unilateral tmo~a~ation error

Max. positive propagation error ~~~+ (%)
Max. negative propagation error ~~=. (%)
Total error range, ~t = ~~=+ + ~m=. (%)
Storage N (locations per node)
Total error range ~t,MI normalized to N = 18 (%)
MUL operations per node per iteration
ADD/SUB operations ~er node Der iteration

0,1, for all propagation angles and all media with properties

1 s CTP. < co. Table II shows that the total error range ~t,

defined as in [12], is the highest in the stub-loaded SCN in

Cases 2 and 3. In order to compare further the performance of
various nodes, the error range ~t is normalized to N = 18
storage locations per node by multiplying it with (Nil 8)
raised to the power of two (second-order accuracy) and 113

(three-dimensional mesh) to produce ~,,ls = ~,(iV/18)2/3.
Effectively, ~~, 18 represents the error range for each node
assuming the same total storage and it is smallest for the

HSCN. However, the SSCN is more computationally efficient
as it uses only six multiplicative (MUL) operations per node

per time step for the scattering procedure [20].
Further consideration should be given to dispersive effects at

interfaces between nodes modeling different materials. The im-
pact of mesh grading maybe studied using the same approach

as described in Section II. The effect of mesh grading is to
introduce different behavior in different directions, however,

the error range is similar to that for uniform mesh [18], [21]. In

general, the optimum TLM condensed node scheme is problem
dependent and data in Table II offer a general guidance as to

what may be achievable in each case. It appears that when
modeling dielectric materials, the stub-loaded SCN and the
HSCN are the most accurate and reasonably efficient, but
degenerate modes are likely to be split. For the general case
(.sr, P. > 1), the HSCN offers the best accuracy, whereas the
SSCN offers a higher efficiency and identical dispersion for
TE and TM modes.

VI. CONCLUSION

Using a systematic algebraic procedure, analytical expan-

sion of the general TLM dispersion relation was made possible
for different symmetrical condensed nodes capable of model-
ing media with arbitrary electromagnetic parameters. Efficient
ways of studying and visualizing dispersion errors were pre-
sented and a detailed quantitative analysis and comparison of
the results were performed. The analytical results obtained by
solving dispersion relations were validated against modeled
results.

The dispersion analysis presented here can be combined

with the theoretical foundation of the general symmetrical
condensed node [19] in order to explore possibilities of deriv-

SCN

Yes
Yes
Yes

0.57
0.00
0.57
12

0.44
6

24

Stub-1oaded SCN I HSCN
Ca9e 1

No
No
No

0.83
0.79
1.62
15

1.43
9

48

Caee 2

Yes
Yes
No

0.57
3.26
3.83
18

3.83
12
54 I

Case 3

No No
No Yes
No No

0.83 0.83
3.26 0.79
4.09 1.62
18 15

4.09 1.43
12 12
54 48

SSCN

Yes
Yes
Yes

2.22
0.00
2.22
12

1.69
6
48

ing new TLM schemes with better propagation characteristics.

Given the theoretical instrument to describe new nodes and a

systematic analytical procedure to study their accuracy, further

work will be directed toward the development of such more

advanced TLM formulations. A comprehensive comparison
between the available TLM and finite-difference schemes will

also be subject of the future work.
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